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4. Finding averaged coordinates 

A frequent problem in computer-assisted molecular 
modelling is that of obtaining a weighted average 
structure for a substructural fragment contained in a 
number of different molecular structures determined 
by X-ray diffraction techniques. 

There are several ways to obtain such averaged 
fragment structures. A particularly convenient one is 
to average atomic positions in a set of appropriately 
superimposed fragment structures. This section 
demonstrates that our superposition procedure pro- 
vides a basis for obtaining weighted average struc- 
tures. 

We require that a weighted average structure (x~) 
obtained from M molecules (x?)  be an average taken 
after suitable reorientation of the molecules. The 
reoriented molecules have the coordinates 

y?  = O " x ? .  (14) 

The weighted average structure is given by 

x°=EumY~ ', E u m = l .  (15) 
m m 

The requirement that the average structure be optimal 
can be formulated as 

E w,E u~(y~"-x°)2 = Y. w,E um(y?2--X °2) 
l m I m 

= minimum, (16) 

where the parameters to be varied are the orientation 
matrices O ~. Again, y?2 is unchanged if the rotation 
matrix O "  is varied; hence (16) is equivalent to 

E wt x°2 = maximum. (17) 
l 

Inserting the definition (15) of x °, we get 

umu" Y~ wzy?y? = maximum. (18) 
rrl, rl / 

The term with m = n is again invariant. Thus, after 
inserting (14), we may equivalently write 

M 

~" umu n T r ( O ~ S ~ " ( ) n ) = m a x i m u m .  (19) 
m : ~ n  

This condition is exactly equivalent to (6) if we take 
instead of constant pairing weights v m" [see (2)] the 
values 

v""  = umu ". (20) 

Therefore, in order to obtain an optimized structure 
as a weighted average of M given stuctures, one has 
to perform the superposition of the M molecules as 
described in § 2, taking as pairing weights the values 
(20). The average coordinates (x °) are then obtained 
through (15) from the matched coordinates. 

This procedure can also be applied to symmetrize 
a structure which is expected to show a certain sym- 
metry, but for which the actual coordinates deviate 
slightly from the required symmetry. The symmetrized 
structure is easily obtained as the average structure 
of all possible symmetry-related orientations super- 
imposed with equal weight factors (v ~"=  constant). 
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Abstract 

Sayre's equation is fundamental to a large part of classical 
direct methods. In this paper, it is shown that this equation 
can be derived via an integral bound to the entropy integral. 
While positivity is implicit in this derivation, atomicity is 
not used. 

Introduction 

Sayre's equation and similar triplet-based forms have 
formed the basis for the highly successful direct methods 
used in small-molecule crystallography (Sayre, 1952; Karle 
& Hauptmann, 1950). The maximum-entropy method has 
the potential to extend these methods to larger and more 



S H O R T  C O M M U N I C A T I O N S  429 

difficult systems and, for this reason, is the subject of much 
current research (Bricogne, 1984; Britten & Collins, 1982; 
Steenstrup & Wilkins, 1984; Narayan & Nityananda, 1982; 
Livesey & Skilling, 1985). Maximum-entropy methods can 
• be shown to be related to regular direct methods in a number 
of ways. The relationship between maximum-entropy and 
maximum-determinant methods can be shown with the use 
of a theorem about the logarithm of the Karle-Hauptman 
determinant (Britten & Collins, 1982; Narayan & 
Nityananda, 1982; Steenstrup, 1984). Sayre's equation has 
been found by the repeated use of the central limit theorem 
of statistics (Livesey & Skilling, 1985). In this paper an 
integral bound is used to show the relationship between 
direct methods and maximum entropy in a straightforward 
manner. 

The Chernov bound will be used. This bound consists 
of replacing In p with the line p -  1. More formally p -  1 
is always greater than or equal to In p. This is just a Taylor- 
series expansion of In p about 1. The expansion can be 
about any point, but for unitary E's 1 is most appropriate. 
(Unitary E's  are, for the purposes of this paper, structure 
factors scaled in such a way that the average value of the 
square of the electron density and the average value of the 
electron density are both equal to one so that no scale factor 
need be propagated in the equations.) the quality of the 
Chernov bound is shown in Fig. 1, which is a graph of 
p In p and p(1 - p ) .  The discrepancy is quite small in the 
region around 1, which is where the expansion of In p was 
centered. As this bound tends to give analytically tractable 
results, it is used extensively in communications theory. 

Definition of entropy 

Entropy was introduced as a measure of the quality of a 
probability distribution by Jaynes (1957). When the entropy 
of a probability distribution is at a maximum, and the 
probability distribution agrees with any observed data, the 
distribution is optimal in the sense that the fewest assump- 
tions about the unobserved data are used. As such it allows 
the use of simple physical models of electron density, such 
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Fig. 1. A graph showing the values of -p  In p and p -/:12. Notice 
that the values are very close in the vicinity of 1 and do not 
diverge by much over the range from 0.5 to 1.5. 

as positivity, to determine unobserved parameters, namely 
the phases. 

The entropy is best defined in terms of the expected value 
of the information, which is defined as the negative 
logarithm of the probability. The concepts of probability 
density and information are only defined for always-posi- 
tive functions. A maximum-entropy map is one in which 
the functional 

H = ~  ( - p  In p) dV, (1) 

where p is a probability density, such as the electron density, 
and d V is a differential volume element, is maximized as 
a function of some set of variables such as the phases 
(where, for example, p is constrained to be a Fourier sum). 
For crystallographic applications p is the electron density; 
the integration is over the unit cell, and the measure - p  In p 
is maximized as a function of the phases and amplitudes 
of the structure factors. The global maximum of this func- 
tional occurs when p is constant, but because the Fourier 
coefficients of a constant are in general non-zero, the 
maximum for a system with non-zero structure factors is 
not a constant. 

Finding a lower bound to the entropy functional 

Starting from (1), the substitution - l n  p >  1 - p  is used. 
This results in the following integral inequality: 

S ( - P  In p) d V >  S p ( 1 - p )  dV. (2) 

This states that the entropy functional is always greater 
than the modified functional. This bound is valid because 
p (1 - p )  is always less than - p  In p and both functions have 
finite maxima and minima for finite positive arguments. 
Furthermore, since this is an inequality between variational 
equations the addition of an arbitrary constant to both sides 
of the inequality does not change the location of the maxima 
or the validity of the bound. Methods for using the right- 
hand side of (2) directly in real space have been summarized 
recently (Lunin, 1985). However, it is of interest to work 
in reciprocal space, and when p is a Fourier series this 
bound replaces the analytically intractable logarithm of a 
Fourier series with the square of a Fourier series. 

Making the substitution that P=Y-h Uh exp(27rih.x), 
where Uh are the unitary E values, gathering terms of 
constant index, taking the absolute value and using the 
triangle inequality one finds that (2) is maximized when 

IU~-E ( Uh_,,U~,)l (3) 
k 

is minimized, which occurs when it is equal to zero. This 
condition yields 

Uh = E ( Uh--kUk). (4) 
k 

which, when the domains of the sums over k and h are the 
same, is just Sayre's equation for unitary E's. Implicit in 
(4) is the assumption that for every pair of Uh and Uk the 
reflection Uh-k can also be found. With real observations 
this condition is often not true so that a modified form of 
(4) is used in practice. 

Concluding remarks 

From this point much of classical direct methods can be 
developed, which makes it clear that the maximum-entropy 
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method is a true member of the set of direct methods. It is 
interesting to note that the conditions under which Sayre's 
equation is most valid, that is when p is nearly constant 
except at atomic positions, are also the conditions under 
which the bound given in (2) is tight. 

The bound used in this paper can be improved by going 
to a higher-order expansion of In p. This would correspond 
to the use of higher-order invariants. However, a word of 
caution is needed, since the next uniform bound occurs 
with a cubic expansion of In p (it is important that a 
uniform, i.e. a single-function, bound be used, because it 
is not trivial to perform the Fourier substitution with a 
non-uniform bound). This would correspond to the use of 
at least a quintet expansion. 
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Abstract 

A simple experimental test is described for deciding whether 
a crystal with a chiral space group is built from homochiral 
or heterochiral domains; this test is applied to (TSeT)2I 
{TSeT= tetraselenotetracene (naphthaceno[5,6-cd, ll ,12- 
c' d ']bis[1,2 ]diselenole ) }. 

Introduction 

Crystals in chiral space groups are sometimes obtained 
under achiral conditions by spontaneous resolution. It may 
then be important to know whether a given crystal specimen 
is homochiral or built from domains of opposite chirality 
[e.g. hexahelicene. Green & Knossow (1981)]. In principle, 
chiroptical measurements may provide an answer but they 
may not always be feasible, especially for very small or 
highly absorbent crystals. We describe here a simple non- 
destructive test which may provide an answer. 

Example 

Although the tetraselenotetracene (TSeT) molecule (Fig. 1) 
has potential D2h symmetry, (TSeT)2I, prepared by co- 
sublimation of TSeT and iodine, crystallizes in the chiral 
space group P2~2~2, a = 18.336, b = 17.450, c = 5.077 
(Hilti, Mayer & Rihs, 1978). In connection with our interest 
in chiral conductors (Wallis, Karrer & Dunitz, 1986), we 
wanted to know whether the crystals were actually 

$e ~ $ e  

S~ ~ S e  

Fig. 1. Structural formula of tetraselenotetracene (TSeT). 

homochiral or multiple twins consisting of left- and right- 
handed domains. 

Method 

The intensity ratio a = I ( h k l ) / l ( h k l )  of a Bijvoet pair of 
reflections is measured on a diffractometer with as fine a 
collimator as possible. The primary-beam cross section must 
be considerably smaller than the crystal under investigation. 
The measurement is repeated over the whole length of the 
(preferably needle-shaped) crystal. 

Several results are conceivable: 

a = 1. Crystal is microtwinned (consists of heterochiral 
domains that are smaller than the primary-beam cross 
section), or else anomalous dispersion is too weak to be 
detectable. 

a changes to 1/a. Crystal is macrotwinned (consists of 
heterochiral fragments comparable in size with the primary 
beam). 

at does not change. Crystal is homochiral. 

Note that refinement of the absolute-structure (twin) 
parameter, as proposed by Flack (1983) and Bernardinelli 
& Flack (1985), would not distinguish between the first two 
cases if only one intensity measurement per reflection were 
available. 

Experimental 

Weissenberg photographs of five sample crystals showed 
that all were macroscopically twinned across the (110) 
planes, so that the hhl reflections of both reciprocal lattices 
coincided. Most of the other reflections were easily resolv- 
able. The ratio between the two macrotwins varied widely 
from crystal to crystal. The crystal structure of (TSeT)2I 
had been established without considering anomalous scat- 
tering (Hilti, Mayer & Rihs, 1978). The cell dimensions and 
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